精英家教网 > 高中数学 > 题目详情
设函数f(x)= lg,其中a∈R,m是给定的正整数,且m≥2,如果不等式f(x)>(x-1) lgm在区间[1,+∞)有解,则实数a的取值范围是______________.

a>  f(x)=lg>(x-1)lgm=lgmx-1,

>mx-1.

∴1-a<()x+()x+…+()x=f(x).∵,,…,∈(0,1),

∴f(x)在[1,+∞)上单调递减.∴f(x)max=f(1)=++…+=.

由题意知,1-a<,∴a>.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•朝阳区二模)设函数f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲线y=f(x)在点(1,f(1))处的切线l的斜率为2-3a,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)在(1)的条件下,求证:对于定义域内的任意一个x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)设函数f(x)=
ax
x2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值;
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围;
(3)在(1)的条件下,若P(x0,y0)为函数f(x)=
ax
x2+b
图象上任意一点,直线l与f(x)的图象切于点P,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是实数,e是自然对数的底数)
(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
2
-
3
sin2ωx-sinωxcosωx(ω>0)
,且y=f(x)的图象的一个对称中心到最近的对称轴的距离为
π
4

(l)求ω的值;
(2)将函数y=f(x)图象向左平移
π
3
个单位,得到函数y=g(x)的图象,求y=g(x)在区间[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

设函数f(x)=|3x-l|+x+2,
(Ⅰ)解不等式f(x)≤3;
(Ⅱ)若不等式f(x)>a的解集为R,求a的取值范围。

查看答案和解析>>

同步练习册答案