精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,若tan =2sinC且AB=3,则△ABC的周长的取值范围

【答案】(4,5]
【解析】解:由tan =2sinC及 = ,得cot =2sinC,
=4sin cos
∵0< ,cos >0,sin >0,
∴sin2 = ,sin =
=
∴C=
在△ABC中,由正弦定理,得: = = =
△ABC的周长y=AB+BC+CA=3+ sinA+ sin( ﹣A)
=3+ sinA+ cosA)
=3+2sin(A+ ),
<A+
<sin(A+ )≤1,
所以,△ABC周长的取值范围是(4,5].
所以答案是:(4,5].
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

(Ⅰ)求关于的线性回归方程

(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为(
A.AC⊥BD
B.AC=BD
C.AC∥截面PQMN
D.异面直线PM与BD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的数列,{bn}是等差数列,且a1=b1=1,a5﹣3b2=7.2a +(2﹣an+1)an﹣an+1=0(n∈N*
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn , n∈N* , 求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数字组成没有重复数字的四位数

可组成多少个不同的四位数?

可组成多少个不同的四位偶数?

中的四位数按从小到大的顺序排成一数列,问第项是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第组的员工人数分别是多少?

(II)为了交流读书心得,现从上述人中再随机抽取人发言,设人中年龄在的人数为,求的数学期望;

(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做是否喜欢阅读国学类书籍进行调查,调查结果如下表所示:(单位:人)

喜欢阅读国学类

不喜欢阅读国学类

合计

14

4

18

8

14

22

合计

22

18

40

根据表中数据,我们能否有的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?

附:,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分期付款的方式购买某家用电器一件,价格为1 150元,购买当天先付150元,以后每月这一天还款一次,每次还款数额相同,20个月还清,月利率为1%,按复利计算.若交付150元后的第一个月开始算分期付款的第一个月,全部欠款付清后,请问买这件家电实际付款多少元?每月还款多少元?(最后结果保留4个有效数字)

参考数据:(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 分别是的中点, 平面 ,二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案