精英家教网 > 高中数学 > 题目详情

【题目】如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为(
A.AC⊥BD
B.AC=BD
C.AC∥截面PQMN
D.异面直线PM与BD所成的角为45°

【答案】B
【解析】解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,
则PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正确;
由PQ∥AC可得AC∥截面PQMN,故C正确;
∵PN⊥PQ,∴AC⊥BD.
由BD∥PN,
∴∠MPN是异面直线PM与BD所成的角,且为45°,D正确;
由上面可知:BD∥PN,PQ∥AC.

而AN≠DN,PN=MN,
∴BD≠AC.B错误.
故选:B.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知集合,对于集合的两个非空子集,若,则称为集合的一组“互斥子集”.记集合的所有“互斥子集”的组数为(视为同一组“互斥子集”).

(1)写出的值;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.

(1)下表是年龄的频数分布表,求正整数a,b的值;

区间

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人数

50

50

a

150

b


(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(1)求角A的大小;
(2)若sinB+sinC= ,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程恰有个互异的实数根,则实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,若0≤a≤1nNn≥2,求证:f(2x)≥2f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,直线AB的方程为3x﹣2y﹣1=0,直线AC的方程为2x+3y﹣18=0.直线BC的方程为3x+4y﹣m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若tan =2sinC且AB=3,则△ABC的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为(
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元

查看答案和解析>>

同步练习册答案