精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若方程恰有个互异的实数根,则实数的取值范围为__________

【答案】

【解析】若关于x的方程f(x)=m|x|=0恰好有4个解,

即函数y=f(x)与y=m|x|的图象有四个交点,

m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;

m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;

m>0时,若与y=mxy=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,

m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,

y=﹣mxy=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,

x2+(5﹣m)x﹣4=0△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),

m=1时,函数y=f(x)与y=m|x|的图象有五个交点,

0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,

故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,

故实数m的取值范围为(1,2)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本小题满分10分)

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,且点A(5,0)到l的距离为3,则直线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:

(1)记集合A{1p,2}B{2,3},则“p3”是“ABB”的__________________

(2)a1”是“函数f(x)|2xa|在区间上为增函数”的________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为(
A.AC⊥BD
B.AC=BD
C.AC∥截面PQMN
D.异面直线PM与BD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.EFAB上,是被切去的一个等腰直角三角形斜边的两个端点.设AEFBx(cm)

(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时, 求函数在区间上的最大值.

查看答案和解析>>

同步练习册答案