【题目】请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.E、F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).
(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
【答案】(1) 当x=15时,S取得最大值.(2) x=20,包装盒的高与底面边长的比值为
【解析】试题分析:(1)先设包装盒的高为,底面边长为,写出, 与的关系式,并注明的取值范围,再利用侧面积公式表示出包装盒侧面积关于的函数解析式,最后求出何时它取得最大值即可;
(2)利用体积公式表示出包装盒容积关于的函数解析式,利用导数知识求出何时它取得的最大值即可.
设包装盒的高为,底面边长为
由已知得
(1)∵2分
∴当时, 取得最大值 3分
(2)根据题意有5分
∴。
由得,(舍)或。
∴当时;当时7分
∴当时取得极大值,也是最大值,此时包装盒的高与底面边长的比值为
即包装盒的高与底面边长的比值为10分.
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以为组距分成组:,,,,,,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①设三个正实数a , b , c , 满足 ,求证:a , b , c一定是某一个三角形的三条边的长;
②设n个正实数 a1,a2,...an 满足不等式 (其中 ),求证: a1,a2,...an 中任何三个数都是某一个三角形的三条边的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,直线AB的方程为3x﹣2y﹣1=0,直线AC的方程为2x+3y﹣18=0.直线BC的方程为3x+4y﹣m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点是椭圆:上任意一点,线段的垂直平分线交于点,点的轨迹记为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)过的直线交曲线于不同的,两点,交轴于点,已知,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左焦点为,左准线方程为.
(1)求椭圆的标准方程;
(2)已知直线交椭圆于, 两点.
①若直线经过椭圆的左焦点,交轴于点,且满足, .求证: 为定值;
②若(为原点),求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com