精英家教网 > 高中数学 > 题目详情
15.已知向量$\vec a$与向量$\vec b$夹角为$\frac{π}{6}$,且$|\vec a|=\sqrt{3}$,$\vec a⊥(\vec a-2\vec b)$,则$|\vec b|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.1D.2

分析 $\vec a⊥(\vec a-2\vec b)$,可得$\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow{b})$=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=0,代入解出即可.

解答 解:∵$\vec a⊥(\vec a-2\vec b)$,
∴$\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow{b})$=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=3-2$\sqrt{3}$$|\overrightarrow{b}|$×$cos\frac{π}{6}$=0,
解得$|\vec b|$=1.
故选:C.

点评 本题查克拉向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-a(x-1)(a>0).
(1)设函数y=f(x)-a在点x=1处的切线为l,求l恒过定点的坐标;
(2)求函数f(x)在区间[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(1,2),B(-1,0),C(3,a)三点在同一条直线上,则a的值为(  )
A.-2B.4C.-4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-(2m+6)x+m+4.
(Ⅰ)若对于任意m∈[-1,1],f(x)>0恒成立,求实数x的取值范围;
(Ⅱ)若对于任意x∈[-1,1],f(x)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把函数$y=sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$个单位得到图象C1,再将C1上的所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变)得到的图象C2,则C2的解析式为y=sin4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.任取x1、x2∈[a,b],且x1≠x2,若f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$,恒成立,则f(x)称为[a,b]上的凸函数.下列函数中①y=2x,②y=log2x,③y=x${\;}^{\frac{1}{2}}$在其定义域上为凸函数是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在棱长为4的正方体ABCD-A1B1C1D1中,点P在棱CC1上,且CC1=4CP.
(1)求直线AP与平面BCC1B1所成的角的正弦值大小;
(2)求点P到平面ABD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数f(x)=xa的图象经过点A($\frac{1}{2}$,$\sqrt{2}$),则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=logax(a>0,a≠1)在x∈[2,4]上的最大值比最小值多1,求实数a的值.

查看答案和解析>>

同步练习册答案