【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根据题设条件可以得出AB⊥AP,CD⊥PD.而AB//CD,就可证明出AB⊥平面PAD.
进而证明出平面PAB⊥平面PAD.(2)先找出AD中点,找出相互垂直的线,建立以为坐标原点, 的方向为轴正方向, 为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量, 是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角.
试题解析:(1)由已知,得AB⊥AP,CD⊥PD.
由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.
又AB 平面PAB,所以平面PAB⊥平面PAD.
(2)在平面内做,垂足为,
由(1)可知, 平面,故,可得平面.
以为坐标原点, 的方向为轴正方向, 为单位长,建立如图所示的空间直角坐标系.
由(1)及已知可得, , , .
所以, , , .
设是平面的法向量,则
,即,
可取.
设是平面的法向量,则
,即,
可取.
则,
所以二面角的余弦值为.
点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.
科目:高中数学 来源: 题型:
【题目】某校1200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1200人的数学成绩中随机抽出200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题;
(1)求a、b、c的值;
(2)如果从这1200名学生中随机取一人,试估计这名学生该次数学测验及格的概率p(注:60分及60分以上为及格);
(3)试估计这次数学测验的年级平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知曲线的参数方程为(为参数),在极坐标系中,直线的方程为: ,直线的方程为.
(Ⅰ)写出曲线的直角坐标方程,并指出它是何种曲线;
(Ⅱ)设与曲线交于两点, 与曲线交于两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC, .点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com