精英家教网 > 高中数学 > 题目详情
(2013•闵行区二模)如图,在直三棱柱ABC-A1B1C1中,∠BAC=
π2
,AB=AC=2,AA1=6,点E、F分别在棱AA1、CC1上,且AE=C1F=2.
(1)求三棱锥A1-B1C1F的体积;
(2)求异面直线BE与A1F所成的角的大小.
分析:(1)利用直三棱柱ABC-A1B1C1中的性质,及三棱锥A1-B1C1F的体积=VF-A1B1C1=
1
3
SA1B1C1×FC1
即可得出.
(2)连接EC,∵A1E∥FC,A1E=FC=4,可得四边形A1ECF是平行四边形,利用其性质可得A1C∥EC,可得∠BEC是异面直线A1F与BE所成的角或其补角,在△BCE中求出即可.
解答:解:(1)在直三棱柱ABC-A1B1C1中,FC1⊥平面A1B1C1,故FC1=2是三棱锥A1-B1C1F的高.
而直角三角形的SA1B1C1=
1
2
A1B1×A1C1
=
1
2
×2×2
=2.
∴三棱锥A1-B1C1F的体积=VF-A1B1C1=
1
3
SA1B1C1×FC1
=
1
3
×2×2=
4
3

(2)连接EC,∵A1E∥FC,A1E=FC=4,
∴四边形A1ECF是平行四边形,
∴A1C∥EC,
∴∠BEC是异面直线A1F与BE所成的角或其补角.
∵AE⊥AB,AE⊥AC,AC⊥AB,AE=AB=AC=2,∴EC=EB=BC=2
2

∴△BCE是等边三角形.
∴∠BEC=60°,即为异面直线BE与A1F所成的角.
点评:熟练利用直三棱柱的性质、三棱锥的体积及等体积变形、平行四边形的判定及性质、异面直线所成的角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•闵行区二模)方程组
x-2y-5=0
3x+y=8
的增广矩阵为
1-25
318
1-25
318

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知集合M={x|x2<4,x∈R},N={x|log2x>0},则集合M∩N=
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)若Z1=a+2i,Z2=
.
12i
23
.
,且
z1
z2
为实数,则实数a的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)用二分法研究方程x3+3x-1=0的近似解x=x0,借助计算器经过若干次运算得下表:
运算次数 1 4 5 6
解的范围 (0,0.5) (0.3125,0.375) (0.3125,0.34375) (0.3125,0.328125)
若精确到0.1,至少运算n次,则n+x0的值为
5.3
5.3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知
e
1
e
2
是夹角为
π
2
的两个单位向量,向量
a
=
e
1
-2
e
2
b
=k
e
1
+
e
2
,若
a
b
,则实数k的值为
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案