精英家教网 > 高中数学 > 题目详情

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M为AB的中点.

(Ⅰ)证明:AC⊥SB;

(Ⅱ)求二面角N-CM-B的大小;

(Ⅲ)求点B到平面SCM的距离.

解法一:(Ⅰ)取AC中点D,连结DS、DB.

∵SA=SC,BA=BC,

∴AC⊥SD且AC⊥DB,

∴AC⊥平面SDB,又SB平面SDB,

∴AC⊥SB.

(Ⅱ)∵SD⊥AC,平面SAC⊥平面ABC,

∴SD⊥平面ABC.

过D作DE⊥CM于E,连结SE,则SE⊥CM,

∴∠SED为二面角S-CM-A的平面角.

由已知有,所以DE=1,又SA=SC=2,AC=4,∴SD=2.

在Rt△SDE中,tan∠SED==2,

∴二面角S-CM-A的大小为arctan2.

(Ⅲ)在Rt△SDE中,SE=,CM是边长为4 正△ABC的中线,

.   ∴SSCM=CM?SE=

设点B到平面SCM的距离为h,

由VB-SCM=VS-CMB,SD⊥平面ABC, 得SSCM?h=SCMB?SD,

∴h=  即点B到平面SCM的距离为

解法二:(Ⅰ)取AC中点O,连结OS、OB.

∵SA=SC,BA=BC,

∴AC⊥SO且AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC

∴SO⊥面ABC,∴SO⊥BO.

如图所示建立空间直角坐标系O-xyz.

则A(2,0,0),C(-2,0,0),

S(0,0,2),B(0,2,0).

=(-4,0,0),=(0,-2,2),

?=(-4,0,0)?(0,-2,2)=0,

∴AC⊥BS.

(Ⅱ)由(Ⅰ)得M(1,,0),

=(2,0,2).   设n=(x,y,z)为平面SCM的一个法向量,

则 

∴n=(-1,,1), 又=(0,0,2)为平面ABC的一个法向量,

∴cos(n,)==

∴二面角S-CM-A的大小为arccos

(Ⅲ)由(Ⅰ)(Ⅱ)得=(2,2,0),

n=(-1,,1)为平面SCM的一个法向量,

∴点B到平面SCM的距离d=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为1的等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)证明:SA⊥BC;
(Ⅲ)求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O为BC中点.
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B-SC-E的平面角的余弦值为
15
5
?若存在,确定E点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,侧棱SC⊥平面SAB,SA⊥BC,侧面△SAB,△SBC,△SAC的面积分别为1,
3
2
,3,则此三棱锥的外接球的表面积为(  )

查看答案和解析>>

同步练习册答案