精英家教网 > 高中数学 > 题目详情
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E为BC的中点,F在棱AC上,且AF=3FC,
(1)求证:AC⊥平面DEF;
(2)求平面DEF与平面ABD所成的锐二面角的余弦值;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由。
(1)证明:取AC的中点H,因为AB=BC,所以BH⊥AC,
因为AF=3FC,所以F为CH的中点,
因为E为BC的中点,所以EF∥BH,则EF⊥AC,
因为△BCD是正三角形,所以DE⊥BC,
因为AB⊥平面BCD,所以AB⊥DE,
因为AB∩BC=B,所以DE⊥平面ABC,
所以 DE⊥AC,
因为 DE∩EF=E,所以AC⊥平面DEF。
(2)
(3)存在这样的点N,当CN=时,“MN∥平面DEF”,
连结CM,设CM∩DE=O,连OF,
由条件知,O为△BCD的重心,CO=CM,
所以 当CF=CN时,MN∥OF,所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥D-ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=
2
,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求异面直线BD与CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在三棱锥DABC中,已知△BCD是正三角

形,AB⊥平面BCDABBCaEBC的中点,

F在棱AC上,且AF=3FC

(1)求三棱锥DABC的表面积;

(2)求证AC⊥平面DEF

(3)若MBD的中点,问AC上是否存在一点N

使MN∥平面DEF?若存在,说明点N的位置;若不

存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学理) 题型:解答题

(本小题满分12分)
如图,在三棱锥DABC中,已知△BCD是正三角
形,AB⊥平面BCDABBCaEBC的中点,
F在棱AC上,且AF=3FC
(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N
使MN∥平面DEF?若存在,说明点N的位置;若不
存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试数学2-4 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;

(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

(3)求平面ABD与平面DEF所成锐二面角的余弦值。

 

查看答案和解析>>

同步练习册答案