精英家教网 > 高中数学 > 题目详情
8.已知等比数列{an}满足a1=2,16a3a5=8a4-1,则a2=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

分析 利用等比数列的通项公式即可得出.

解答 解:设等比数列{an}的公比为q,
∵a1=2,16a3a5=8a4-1,
∴16×22q6=8×2×q3-1,
化为64q6-16q3+1=0,
解得8q3=1,
解得q=$\frac{1}{2}$.
则a2=$2×\frac{1}{2}$=1.
故选:B.

点评 本题考查了等比数列的通项公式、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0)、F2(3,0),直线y=kx与椭圆交于A、B两点.
(1)若三角形AF1F2的周长为$4\sqrt{3}+6$,求椭圆的标准方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB为直径的圆过椭圆的右焦点,求直线y=kx斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=k(x+1)2-ln(x+1)(k∈R).
(1)当k=$\frac{1}{2}$时,求函数f(x)的单调区间与极值;
(2)若x轴是曲线y=f(x)的一条切线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=1+1ogx2+1og${\;}_{{x}^{2}}$4+1og${\;}_{{x}^{3}}$8,则使f(x)<0的x的取值范围是(  )
A.(0,1)B.(1,+∞)C.($\frac{1}{8}$,1)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{1-3i}{1+i}$的模是(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),点F1(-1,0)、C(-2,0)分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴重合)交M于A,B两点.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)是否存在直线l,使得点B在以线段F1C为直径的圆上,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图中的曲线是指数函数的图象,已知a的值分别取$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$,则相应于曲线C1,C2,C3,C4的a依次为(  )
A.$\frac{4}{3}$,$\sqrt{2}$,$\frac{1}{5}$,$\frac{3}{10}$B.$\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$C.$\frac{3}{10}$,$\frac{1}{5}$,$\sqrt{2}$,$\frac{4}{3}$D.$\frac{1}{5}$,$\frac{3}{10}$,$\frac{4}{3}$,$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若cosA=$\frac{4}{5}$,tan(A-B)=-$\frac{1}{2}$,则tanB=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在四面体ABCD中,AB=3,BC=7,CD=11,DA=9.则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为(  )
A.0B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案