精英家教网 > 高中数学 > 题目详情
3.复数$z=\frac{1-3i}{1+i}$的模是(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{5}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:复数$z=\frac{1-3i}{1+i}$=$\frac{(1-3i)(1-i)}{(1+i)(1-i)}$=$\frac{-2-4i}{2}$=-1-2i的模|z|=$\sqrt{(-1)^{2}+(-2)^{2}}$=$\sqrt{5}$.
故选:D.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=loga|x|在(-∞,0)上单调递增,则f(-3)与f(2)的大小关系是(  )
A.f(-3)=f(2)B.f(-3)>f(2)C.f(-3)<f(2)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A、B、C所对的边长分别为a、b、c,且a2+c2=b2+6c,bsinA=4.
(1)求边长a;
(2)若△ABC的面积S=10,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(1-x)的图象如图所示,则y=f(1+x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=loga $\frac{x-3}{x+3}$,g(x)=1+loga(x-1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,
(1)求集合D;
(2)当a>1时.若不等式g(x-$\frac{1}{6}$)-f(2x)>2在D内恒成立,求a的取值范围;
(3)是否存在实数a,当[m,n]?D时,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求实数a的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}满足a1=2,16a3a5=8a4-1,则a2=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设正数列{an}满足a1=a2=1,$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-(x-1)(a为常数).
(1)求函数f(x)的极值;
(2)试证明:对任意的n∈N*,都有ln(1+$\frac{1}{n}$)$<\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{{e}^{x}}{x}$.
(Ⅰ)求曲线在(-1,f(-1))处的切线方程;
(Ⅱ)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.

查看答案和解析>>

同步练习册答案