精英家教网 > 高中数学 > 题目详情
已知函数
(1)讨论函数的单调区间;
(2)如果存在,使函数处取得最小值,试求的最大值.
解:(Ⅰ)当时,上单调递减;当时,上单调递减,在单调递增;当时,上单调递减,上单调递增;当时,上单调递减,上单调递增。
(Ⅱ) 的最大值为
本试题主要是考查了导数在研究函数中的运用。
(1)因为,然后利用导数的正负来判定函数的单调性的运用。
(2)依题意有在区间上恒成立,即,构造函数求解最值得到结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,其导函数为
的单调减区间是
的极小值是
③当时,对任意的,恒有
④函数满足
其中假命题的个数为(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B中有3个元素,那么从A到B的不同满射的个数为
A.24B.6C.36D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)
(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.
(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在同一区间[a, b]上的两个函数,若函数上有两个不同的零点,则称在[a, b]上是“联系函数”,区间[a, b]称为“联系区间”.若在[0,3]上是“联系函数”,则k的取值范围为 (       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数)的值域为(   )
               

查看答案和解析>>

同步练习册答案