精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为其右顶点为,下顶点为,定点的面积为过点作与轴不重合的直线交椭圆两点,直线分别与轴交于两点.

1)求椭圆的方程;

2)试探究的横坐标的乘积是否为定值,说明理由.

【答案】(1);(2)定值,理由见解析

【解析】

(1)利用三角形面积公式结合离心率列出方程,求解即可;

(2)利用点斜式写出直线PQ,BP,BQ的方程,令,得点MN的横坐标,求出,将直线代入椭圆方程利用韦达定理得出,化简即可判断为定值.

1)由已知,的坐标分别是由于的面积为

,又由,解得

∴椭圆的方程为

2)设直线PQ的方程为PQ的坐标分别为

则直线BP的方程为,令,得点M的横坐标

直线BQ的方程为,令,得点N的横坐标

把直线代入椭圆

由韦达定理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间直角坐标系中,四棱锥的底面是边长为的正方形,且底面在平面内,点轴正半轴上,平面,侧棱与底面所成角为45°

1)若是顶点在原点,且过两点的抛物线上的动点,试给出满足的关系式;

2)若是棱上的一个定点,它到平面的距离为),写出两点之间的距离,并求的最小值;

3)是否存在一个实数),使得当取得最小值时,异面直线互相垂直?请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将所有平面向量组成的集合记作是从的映射,记作,其中都是实数.定义映射的模为:在的条件下 的最大值记做.若存在非零向量,及实数使得,则称的一个特征值.

(1)若

(2)如果,计算的特征值,并求相应的

3)试找出一个映射,满足以下两个条件:①有唯一特征值,②.(不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数y=f(x),xD,若存在闭区间[ab]和常数C,使得对任意x[ab]都有f(x)=C,称f(x)桥函数”.

1)作出函数的图象,并说明f(x)是否为桥函数?(不必证明)

2)设f(x)定义域为R,判断f(x)为奇函数桥函数’”的什么条件?给出你的结论并说明理由;

3)若函数桥函数,求常数mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个函数,如果对任意一个三角形,只要它的三边长都在的定义域内,就有也是某个三角形的三边长,则称双三角形函数”.

1)判断中,哪些是双三角形函数,哪些不是,并说明理由;

2)若是定义在上周期函数,值域为,求证:不是双三角形函数

3)已知函数,求证:函数双三角形函数”.(可利用公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P–ABCD中,

1)设ACBD相交于点M,且平面PCD,求实数m的值;

(2)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为2为体对角线上的一点,且,现有以下判断:①;②若平面,则;③周长的最小值是;④若为钝角三角形,则的取值范围为,其中正确判断的序号为______.

查看答案和解析>>

同步练习册答案