| A. | y2=2x | B. | y2=2$\sqrt{2}$x | C. | y2=4x | D. | y2=4$\sqrt{2}$x |
分析 求出直线AB的方程,联立方程组,利用根与系数的关系解出|y2-y1|,根据三角形的面积列出方程解出p,得到抛物线的方程.
解答 解:抛物线的焦点坐标为($\frac{p}{2}$,0),直线AB的方程为y=x-$\frac{p}{2}$.
联立方程组$\left\{\begin{array}{l}{{y}^{2}=2px}\\{y=x-\frac{p}{2}}\end{array}\right.$,消元得y2-2py-p2=0,
设A(x1,y1),B(x2,y2),则y1+y2=2p,y1y2=-p2.
∴S△AOB=$\frac{1}{2}•\frac{p}{2}|{y}_{2}-{y}_{1}|$=$\frac{p}{4}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{\sqrt{2}}{2}{p}^{2}$=2$\sqrt{2}$.
∴p=2.
∴抛物线方程为y2=4x.
故选:C.
点评 本题考查了抛物线的性质,根与系数的关系,属于中档题.
科目:高中数学 来源:2017届四川巴中市高中高三毕业班10月零诊理数试卷(解析版) 题型:选择题
在
中,角
,
,
的对边分别为
,
,
,且
,若
的面积
,则
的最小值为( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$({x^2}{)^{\frac{1}{2}}}$,g(x)=$({x^{\frac{1}{2}}}{)^2}$ | B. | f(x)=$\frac{x^2-9}{x+3}$,g(x)=x-3 | ||
| C. | f(x)=${log_2}{x^2}$,g(x)=2log2x | D. | f(x)=x,g(x)=lg10x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{18}$ | B. | $\frac{13}{22}$ | C. | $\frac{3}{22}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2p}$ | B. | -$\frac{1}{p}$ | C. | $\frac{1}{p}$ | D. | $\frac{1}{2p}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com