精英家教网 > 高中数学 > 题目详情
已知椭圆具有性质:若M、N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线C′:
x2
a2
-
y2
b2
=1写出具有类似特性的性质,并加以证明.
分析:设点M的坐标为(m,n),则点N的坐标为(-m,-n),进而可知
m2
a2
-
n2
b2
=1、又设点P的坐标为(x,y),表示出直线PM和PN的斜率,求的两直线斜率乘积的表达式,把y和x的表达式代入发现结果与p无关.
解答:解:类似的性质为若MN是双曲线
x2
a2
-
y2
b2
=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.
设点M的坐标为(m,n),则点N的坐标为(-m,-n),
其中
m2
a2
-
n2
b2
=1、又设点P的坐标为(x,y),
由kPM=
y-n
x-m
,kPN=
y+n
x+m

得kPM•kPN=
y-n
x-m
y+n
x+m
=
y2-n2
x2-m2

将y2=
b2
a2
x2-b2,n2=
b2
a2
m2-b2,代入得kPM•kPN=
b2
a2
点评:本题主要考查了圆锥曲线的共同特征.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•南宁二模)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若A是椭圆C的一条与x轴不垂直的弦的中点,那么该弦的斜率等于点A的横、纵坐标的比值与某一常数的积.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0且a,b为常数)上关于原点对称的两点,点P是椭圆上的任意一点,若直线PA和PB的斜率都存在,并分别记为kPA,kPB,那么kPA与kPB之积是与点P位置无关的定值-
b2
a2
.试对双曲线
x2
a2
-
y2
b2
=1(a>0,b>0且a,b为常数)写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,P是椭圆上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值.类比椭圆,写出双曲线C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的类似性质,并加以证明.

查看答案和解析>>

同步练习册答案