精英家教网 > 高中数学 > 题目详情

已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f (x)在区间[0,2]上有表达式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)写出f(x)在[-3,3]上的表达式,并讨论函数f(x)在[-3,3]上的单调性;
(3)求出f(x)在[-3,3]上的最小值与最大值,并求出相应的自变量的取值.

(1)f(-1)=-k   f(2.5)=-
(2) f(x)=   f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数
(3) ①k<-1时,f(x)在x=-3处取得最小值f(-3)=-k2,
在x=-1处取得最大值f(-1)=-k.
②k=-1时,f(x)在x=-3与x=1处取得最小值f(-3)=f(1)=-1,
在x=-1与x=3处取得最大值f(-1)=f(3)=1.
③-1<k<0时,f(x)在x=1处取得最小值f(1)=-1,在x=3处取得最大值f(3)=-.

解析解:(1)f(-1)=kf(1)=-k,
∵f(0.5)=kf(2.5),
∴f(2.5)=f(0.5)=(0.5-2)×0.5=-.
(2)∵对任意实数x,f(x)=kf(x+2),
∴f(x-2)=kf(x),
∴f(x)=f(x-2),
当-2≤x<0时,0≤x+2<2,f(x)=kf(x+2)=kx(x+2);
当-3≤x<-2时,-1≤x+2<0,
f(x)=kf(x+2)=k2(x+2)(x+4);
当2<x≤3时,0<x-2≤1,
f(x)=f(x-2)=(x-2)(x-4).
故f(x)=
∵k<0,
∴f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数.
(3)由函数f(x)在[-3,3]上的单调性可知,
f(x)在x=-3或x=1处取得最小值f(-3)=-k2或f(1)=-1,
而在x=-1或x=3处取得最大值f(-1)=-k或f(3)=-.
故有①k<-1时,f(x)在x=-3处取得最小值f(-3)=-k2,
在x=-1处取得最大值f(-1)=-k.
②k=-1时,f(x)在x=-3与x=1处取得最小值f(-3)=f(1)=-1,
在x=-1与x=3处取得最大值f(-1)=f(3)=1.
③-1<k<0时,f(x)在x=1处取得最小值f(1)=-1,在x=3处取得最大值f(3)=-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=的图象与函数y=kx-2的图象恰有两个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米.已知后面墙的造价为每米45元,其他墙的造价为每米180元,设后面墙长度为米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价 (单位:元)与上市时间(单位:天)的数据如下:

上市时间
 
4
 
10
 
36
 
市场价
 
90
 
51
 
90
 
(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价与上市时间的变化关系并说明理由:①;②;③
(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga(3-ax).
(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围.
(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,(其中)
(1)求实数m的值;
(2)在时,讨论函数f(x)的增减性;
(3)当x时,f(x)的值域是(1,),求n与a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知log189=a,18b=5,用a、b表示log3645.

查看答案和解析>>

同步练习册答案