精英家教网 > 高中数学 > 题目详情
已知sin(
π
4
-x)=
4
5
,则sin2x的值为
-
7
25
-
7
25
分析:已知等式左边利用两角和与差的正弦函数公式化简,两边平方变形即可求出sin2x的值.
解答:解:sin(
π
4
-x)=
2
2
(cosx-sinx)=
4
5
,即cosx-sinx=
4
2
5

两边平方得:(cosx-sinx)2=1-2sinxcosx=
32
25
,即2sinxcosx=-
7
25

则sin2x=2sinxcosx=-
7
25

故答案为:-
7
25
点评:此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及二倍角的正弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=-
1
5
,且0<x<
π
2
,求sin(
π
4
+x)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=
12
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sin(
π
4
-x)=
5
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)
的值.
(2)已知tan(α-β)=
1
2
,tanβ=-
1
7
,且α,β∈(0,π),求2α-β的值.

查看答案和解析>>

同步练习册答案