精英家教网 > 高中数学 > 题目详情
5.已知等比数列1,2,4,8,16…则通项公式an=2n-1

分析 由题意可得数列的公比,可得通项公式.

解答 解:由题意可得等比数列的首项a1=1,公比q=2,
∴通项公式an=1×2n-1=2n-1
故答案为:2n-1

点评 本题考查等比数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知α是第二象限角.试确定以下角的位置:
(1)2α:
(2)$\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,求 f(1)+f(2)+…+f(2013)+f(2014)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2013}$)+f($\frac{1}{2014}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若xlog52≥-1,则函数f(x)=4x-2x+1-3的最小值为(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列3,7,11,15,19,…,则通项公式an=4n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用100万元炒股,第一天涨停板(涨10%),第二天跌停板(跌10%),那么第二天实际亏了1万元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=(x-a)(x-b)-2(a<b)的两个零点分别是α,β(α<β),则实数a、b、α、β的大小关系用“<”按从小到大的顺序排列为α<a<b<β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2)    M?N=x1x2+y1y2.则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M.
其中真命题的序号为①③④(把真命题的序号全部写出).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.记集合T={0,1,2,3,4,5,6,7,8,9},$M=\{\frac{a_1}{10}+\frac{a_2}{{{{10}^2}}}+\frac{a_3}{{{{10}^3}}}+\frac{a_4}{{{{10}^4}}}|{a_i}∈T,i=1,2,3,4\}$,将M中的元素按从大到小排列,则第2012个数是(  )
A.$\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{3}{{{{10}^4}}}$B.$\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{2}{{{{10}^4}}}$
C.$\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{8}{{{{10}^3}}}+\frac{8}{{{{10}^4}}}$D.$\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{9}{{{{10}^3}}}+\frac{1}{{{{10}^4}}}$

查看答案和解析>>

同步练习册答案