(本小题满分14分)
已知函数
(
).
(Ⅰ)求函数
的单调区间;
(Ⅱ)记函数
的图象为曲线
.设点
,
是曲线
上的不同两点.
如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行
于直线
,则称函数
存在“中值相依切线”.试问:函数
是否存在“中值相依切
线”,请说明理由.
解:(Ⅰ)易知函数
的定义域是
,
. …………1分
①
当
时,即
时, 令
,解得
或
;
令
,解得
.……………2分
所以,函数
在
和
上单调递增,在
上单调递减
②当
时,即
时, 显然,函数
在
上单调递增;……………3分
③当
时,即
时, 令
,解得
或
;
令
,解得
.……………4分
所以,函数
在
和
上单调递增,在
上单调递减
综上所述,
⑴当
时,函数
在
和
上单调递增,在
上单调递减;
⑵当
时,函数
在
上单调递增;
⑶当
时,函数
在
和
上单调递增,在
上单调递减. ……………5分
(Ⅱ)假设函数
存在“中值相依切线”.
设
,
是曲线
上的不同两点,且
,
则 ![]()
![]()
……………7分
曲线在点
处的切线斜率
![]()
![]()
,……………8分
依题意得:![]()
.
化简可得: ![]()
,即
=![]()
. ……………10分
设
(
),上式化为:
, 即
. ………………12分
令
,![]()
![]()
.
因为
,显然
,所以
在
上递增,显然有
恒成立.
所以在
内不存在
,使得
成立.
综上所述,假设不成立.所以,函数
不存在“中值相依切线”. ……………14分
【解析】略
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com