精英家教网 > 高中数学 > 题目详情
3.已知命题p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命题q:?x∈(0,+∞),x>sinx,则下列判断正确的是(  )
A.p为真B.¬q为假C.p∧q为真D.p∨q为假

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:?x∈R,都有sinx≤1,故命题p:?x0∈R,使sinx0=$\frac{\sqrt{5}}{2}$是假命题;
令f(x)=x-sinx,f′(x)=1+cosx>0,y=f(x)在区间(0,+∞)上单调递增,
∴f(x)>f(0)=0,
故命题q:?x∈(0,+∞),x>sinx是真命题,
故¬q是假命题,
故选:B.

点评 本题考查了复合命题的判断,考查三角函数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若a>b,c>d,则不等式一定成立的是(  )
A.a-c>b-dB.a+c>b+dC.ac>bdD.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a$与$\overrightarrow b$的夹角为1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
(1)求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)当x为何值时,x$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$+3$\overrightarrow b$垂直?
(3)求$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=lnx-ax+1(a为实常数)在x=1处的切线与直线y=2016平行.
(1)求a的值;   
(2)求f(x)的单调区间;
(3)证明当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果ξ~B(n,p),其中0<p<1,那么使P(ξ=k)取最大值的k 值(  )
A.有且只有一个B.有且只有两个
C.不一定有D.当(n+1)p为整数时有两个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合S={x|x2-5x+6≥0},T={x|x>0},则S∩T=(  )
A.(0,2]∪[3,+∞)B.[2,3]C.(-∞,2]∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于R上可导的任意函数f(x),若满足$\frac{1-x}{f′(x)}$≥0,则必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则f(x)的单调减区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.cos$\frac{5π}{3}$的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案