精英家教网 > 高中数学 > 题目详情

函数上有定义,若对任意,有

则称上具有性质.设在[1,3]上具有性质,现给出如下题:①上的图像时连续不断的;   ②上具有性质;

③若处取得最大值,则;④对任意,有

其中真命题的序号(  )

A.①②               B.①③           C.②④           D.②③④

 

【答案】

D

【解析】①可以不连续,只要满足图像是向下凸的特征即可。

②正确。由P性质的定义可知[1,3]具有性质P,则在此子区间上也应具有此性质.

③正确.f(x)在x=2处取得最大值1,故对任意x1,x2属于[1,3],

,所以对任意,有

,故f(x)=1,.

④令

,

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数F(x)和f(x)都在区间D上有定义,若对D的任意子区间[u,v],总有[u,v]上的实数p和q,使得不等式f(p)≤
F(u)-F(v)u-v
≤f(q)成立,则称F(x)是f(x)在区间D上的甲函数,f(x)是F(x)在区间D上的乙函数.已知F(x)=x2-3x,x∈R,那么F(x)的乙函数f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
) ≤
1
2
[f(x1) +f(x2) ]
则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1,
3
]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有f(
x1+x2+x3+x4
4
) ≤
1
4
[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)设f(x)在区间I上有定义,若对?x1,x2∈I,都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称f(x)是区间I的向上凸函数;若对?x1,x2∈I,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,则称f(x)是区间I的向下凸函数,有下列四个判断:
①若f(x)是区间I的向上凸函数,则-f(x)在区间I的向下凸函数;
②若f(x)和g(x)都是区间I的向上凸函数,则f(x)+g(x)是区间I的向上凸函数;
③若f(x)在区间I的向下凸函数,且f(x)≠0,则
1
f(x)
是区间I的向上凸函数;
④若f(x)是区间I的向上凸函数,?x1,x2,x3,x4∈I,则有f(
x1+x2+x3+x4
4
)≥
f(x1)+f(x2)+f(x3)+f(x4)
4

其中正确的结论个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如果两个实数u<v,求证:2u<
v2-u2
v-u
<2v

(2)定义  设函数F(x)和f(x)都在区间I上有定义,若对I的任意子区间[u,v],总有[u,v]上的p和q,使有不等式f(p)≤
F(u)-F(v)
u-v
≤f(q)
成立,则称F(x)是f(x)在区间I上的甲函数,f(x)是F(x)在区间I上的乙函数.
请根据乙函数定义证明:在(0,+∞)上,函数g(x)=
1
2
x
f(x)=
x
的乙函数.

查看答案和解析>>

科目:高中数学 来源:2010年福建省八县(市高二下学期期末联考(文科)数学卷 题型:填空题

设函数都在区间上有定义,若对的任意子区间,总有上的实数,使得不等式成立,则称在区间上的甲函数,在区间上的乙函数.已知,那么的乙函数_____________

 

查看答案和解析>>

同步练习册答案