£¨2013•ÉعØһģ£©Éèf£¨x£©ÔÚÇø¼äIÉÏÓж¨Ò壬Èô¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬Ôò³Æf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»Èô¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ü
f(x1)+f(x2)
2
£¬Ôò³Æf£¨x£©ÊÇÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÓÐÏÂÁÐËĸöÅжϣº
¢ÙÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò-f£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£»
¢ÚÈôf£¨x£©ºÍg£¨x£©¶¼ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
¢ÛÈôf£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÇÒf£¨x£©¡Ù0£¬Ôò
1
f(x)
ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
¢ÜÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬?x1£¬x2£¬x3£¬x4¡ÊI£¬ÔòÓÐf£¨
x1+x2+x3+x4
4
£©¡Ý
f(x1)+f(x2)+f(x3)+f(x4)
4

ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£º¶ÔÓÚ¢Ù¢Ú¢ÜÖ±½ÓÀûÓú¯ÊýÊÇ¡°Í¹º¯Êý¡±µÄ¶¨Ò壬ͨ¹ý·ÅËõ·¨Ö¤Ã÷¼´¿É£»¶ÔÓÚ¢ÛÀûÓþٷ´ÀýµÄ·½·¨½áºÏͼÏ󷨼´¿É½øÐÐÅжϣ®
½â´ð£º½â£º¢ÙÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬
¡à-f(
x1+x2
2
)¡Ü
-f(x1)-f(x2)
2
£¬
¡à-f£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£»ÕýÈ·£®
¢ÚÈôf£¨x£©ºÍg£¨x£©¶¼ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬
g(
x1+x2
2
)¡Ý
g(x1)+g(x2)
2
£¬Á½Ê½Ïà¼ÓµÃf(
x1+x2
2
)+g(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
+
g(x1)+g(x2)
2

¡àf£¨x£©+g£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»ÕýÈ·£®
¢ÛÈôf£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÇÒf£¨x£©¡Ù0£¬Ôò
1
f(x)
²»Ò»¶¨ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
Èçf£¨x£©=ex£¬
1
f(x)
=(
1
e
)x
£¬Èçͼ£¬

ËüÃǶ¼ÊÇÏòÏÂ͹º¯Êý£®¹Ê´í£®
¢ÜÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬
?x1£¬x2£¬x3£¬x4¡ÊI£¬ÔòÓÐf£¨
x1+x2+x3+x4
4
£©=f£¨
x1+x2
2
+
x3+x4
2
2
£©¡Ý
f(
x1+x2
2
)+f(
x3+x4
2
)
2

¡Ý
f(x1)+f(x2)+f(x3)+f(x4)
4
£¬¹ÊÕýÈ·£®
ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÊÇ3£®
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÒÔ¼°·ÅËõ·¨Ö¤Ã÷ÎÊÌâµÄ²½Ö裬ж¨ÒåµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعØһģ£©ÔÚʵÑéÔ±½øÐÐÒ»ÏîʵÑéÖУ¬ÏȺóҪʵʩ5¸ö³ÌÐò£¬ÆäÖг̶ÈAÖ»ÄܳöÏÖÔÚµÚÒ»²½»ò×îºóÒ»²½£¬³ÌÐòC»òDʵʩʱ±ØÐëÏàÁÚ£¬ÇëÎÊʵÑé˳ÐòµÄ±àÅÅ·½·¨¹²ÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعØһģ£©Èçͼ£¬ÈýÀâ׶P-ABCÖУ¬PB¡Íµ×ÃæABCÓÚB£¬¡ÏBCA=90¡ã£¬PB=CA=2£¬µãEÊÇPCµÄÖе㣮
£¨1£©ÇóÖ¤£º²àÃæPAC¡ÍƽÃæPBC£»
£¨2£©ÈôÒìÃæÖ±ÏßAEÓëPBËù³ÉµÄ½ÇΪ¦È£¬ÇÒtan¦È=
3
2
2
£¬Çó¶þÃæ½ÇC-AB-EµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعØһģ£©Èç¹û¼¯ºÏA={x|x2+ax+1=0}ÖÐÖ»ÓÐÒ»¸öÔªËØ£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعØһģ£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ô²C1µÄ²ÎÊý·½³ÌΪ
x=cos¦Á
y=1+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²C2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£¬ÔòC1ÓëC2µÄλÖùØϵÊÇ
ÄÚÇÐ
ÄÚÇÐ
£¨ÔÚ¡°Ïཻ£¬ÏàÀ룬ÄÚÇУ¬ÍâÇУ¬ÄÚº¬¡±ÖÐÑ¡ÔñÒ»¸öÄãÈÏΪÕýÈ·µÄÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉعØһģ£©Ä³Ð£ÎªÁ˽â¸ß¶þѧÉúA£¬BÁ½¸öѧ¿Æѧϰ³É¼¨µÄºÏ¸ñÇé¿öÊÇ·ñÓйأ¬Ëæ»ú³éÈ¡Á˸ÃÄ꼶һ´ÎÆÚÄ©¿¼ÊÔA£¬BÁ½¸öѧ¿ÆµÄºÏ¸ñÈËÊýÓë²»ºÏ¸ñÈËÊý£¬µÃµ½ÒÔÏÂ2X2ÁÐÁª±í£º
Aѧ¿ÆºÏ¸ñÈËÊý Aѧ¿Æ²»ºÏ¸ñÈËÊý ºÏ¼Æ
Bѧ¿ÆºÏ¸ñÈËÊý 40 20 60
Bѧ¿Æ²»ºÏ¸ñÈËÊý 20 30 50
ºÏ¼Æ 60 50 110
£¨1£©¾Ý´Ë±í¸ñ×ÊÁÏ£¬ÄãÈÏΪÓжà´ó°ÑÎÕÈÏΪ¡°Aѧ¿ÆºÏ¸ñ¡±Óë¡°Bѧ¿ÆºÏ¸ñ¡±Óйأ»
£¨2£©´Ó¡°Aѧ¿ÆºÏ¸ñ¡±µÄѧÉúÖÐÈÎÒâ³éÈ¡2ÈË£¬¼Ç±»³éÈ¡µÄ2ÃûѧÉúÖС°Bѧ¿ÆºÏ¸ñ¡±µÄÈËÊýΪX£¬ÇóXµÄÊýѧÆÚÍû£®
¸½¹«Ê½Óë±í£ºK2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P£¨K2¡Ýk£© 0.15 0.10 0.05 0.025 0.010 0.005
K 2.072 2.706 3.841 5.024 6.635 7.879

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸