精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知椭圆的离心率是,其左、右顶点分别为为短轴的端点,△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的右焦点,若点是椭圆上异于的任意一点,直线与直线分别交于两点,证明:以为直径的圆与直线相切于点
(Ⅰ).(Ⅱ)证明:见解析。
本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的综合运用,
(1)运用椭圆的性质得到椭圆的参数a,b,c的关系式,从而得到椭圆的方程。
(2)设出直线方程与椭圆的方程联立方程组,然后结合韦达定理和向量的数量积公式得到结论。
(Ⅰ)解:由已知        解得.   …4分
故所求椭圆方程为.             …………5分
(Ⅱ)证明:由(Ⅰ)知.设,则. 于是直线方程为 ,令,得;所以,同理.  所以.所以
   
所以 ,点在以为直径的圆上.      …………10分
的中点为,则.         …………11分

所以

所以 . 因为是以为直径的圆的半径,为圆心,
故以为直径的圆与直线相切于右焦点.   …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分
已知椭圆的离心率为,以原点为圆心,
椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆
于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率.
(1)求椭圆的标准方程;
(2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线轴,连结AQ并延长交直线于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,,动点P的轨迹为曲线E,曲线E过点C且满足|PA|+|PB|为常数。
(1)求曲线E的方程;
(2)是否存在直线L,使L与曲线E交于不同的两点M、N,且线段MN恰被直线平分?若存在,求出L的斜率的取值范围;若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点和直线分别是椭圆的右焦点和右准线.过点作斜率为的直线,该直线与交于点,与椭圆的一个交点是,且.则椭圆的离心率        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的中心在原点,焦点在轴上,经过点,离心率

(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为,点为直线上任意一点(点不在轴上),
连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆上的一点,若到椭圆右准线的距离是,则点到右焦点的距离     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率。
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为椭圆的两个焦点,以为圆心作圆,已知圆经过椭圆的中心,且与椭圆相交于点,若直线恰与圆相切,则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案