精英家教网 > 高中数学 > 题目详情
精英家教网正方体ABCD-A1B1C1D1中,若E为棱AB的中点,则直线C1E与平面ACC1A1所成角的正切值为(  )
A、
2
6
B、
2
4
C、
17
17
D、
17
分析:取AD中点F,交AC于点M,连接MC,则∠EC1M就是直线C1E与平面ACC1A1所成角,解三角形EC1M,即可得到直线C1E与平面ACC1A1所成角的正切值.
解答:精英家教网解:取AD中点F,交AC于点M,连接MC,则EF⊥AC,EF⊥A1A,得EF⊥面ACC1A1
∴∠EC1M就是直线C1E与平面ACC1A1所成角,
设正方体棱长为4,则EM=2sin45°=
2

MC=AC-AM=4
2
-
2
=3
2

∴MC1=
MC2+C
C
2
1
=
34

tan∠EC1M=
EM
MC1
=
2
34
=
17
17

故选C.
点评:本题以正方体为载体,考查了直线与平面所成角的角度求解问题,考查空间想象能力及空间几何体的构建能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案