分析 利用两角和差的正弦公式求得sinαcosβ和cosαsinβ 的值,再利用同角三角函数的基本关系求得$\frac{tanα}{tanβ}$的值.
解答 解:∵sin(α+β)=sinαcosβ+cosαsinβ=$\frac{2}{3}$,sin(α-β)=sinαcosβ-cosαsinβ=$\frac{1}{3}$,
∴sinαcosβ=$\frac{1}{2}$,cosαsinβ=$\frac{1}{6}$,
则$\frac{tanα}{tanβ}$=$\frac{sinαcosβ}{cosαsinβ}$=$\frac{\frac{1}{2}}{\frac{1}{6}}$=3,
故答案为:3.
点评 本题主要考查同角三角函数的基本关系,两角和差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com