精英家教网 > 高中数学 > 题目详情
10.函数f(x)=10x+1的值域是(  )
A.(-∞,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)

分析 可以看出x+1可以取遍所有的实数R,从而根据指数函数的值域有10x+1>0,这便得出该函数的值域.

解答 解:x+1∈R;
∴10x+1>0;
∴f(x)的值域为(0,+∞).
故选:C.

点评 考查一次函数的值域,指数函数的值域,y=10x的值域为(0,+∞),从而可以根据沿x轴的平移变换得出函数f(x)=10x+1的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求值:
(1)sin150°;
(2)tan1020°;
(3)sin(-$\frac{3}{4}$π);
(4)sin(-750°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=log3(3+x)+log3(3-x).
(1)求函数f(x)的定义域和值域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.幂函数y=xa,y=xb,y=xc,y=xd在第一象限的图象如图所示,则a,b,c,d的大小关系是 (  )
A.a>b>c>dB.d>b>c>aC.d>c>b>aD.b>c>d>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cos(α-β)=$\frac{12}{13}$.cos(α+β)=-$\frac{1}{13}$.求tanα•tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;       
(2)2$\sqrt{3}$×$\root{6}{12}$×$\root{3}{\frac{3}{2}}$
(3)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴的对称点坐标为(  )
A.(4,0,6)B.(-4,7,-6)C.(-4,0,-6)D.(-4,7,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,圆O:x2+y2=1,P为直线l:x=t(1<t<2)上一点.设直线l与x轴交于点M,线段OM的中点为Q.R为圆O上一点,且RM=1,直线RM与圆O交于另一点N,则线段NQ长的最小值为$\frac{\sqrt{14}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$与y=xB.y=${2}^{{\frac{1}{2}log}_{2}x}$与y=$\frac{x}{\sqrt{x}}$
C.y=x0与y=1D.y=x与y=2lg$\sqrt{x}$

查看答案和解析>>

同步练习册答案