精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=loga(x+1),g(x)=loga(1-x)其中(a>0且a≠1).
(1)判断f(x)-g(x)的奇偶性,并说明理由;
(2)求使f(x)-g(x)>0成立的x的集合.

分析 (1)首先判断函数的定义域是否关于原点对称,定义域为{x|-1<x<1}关于原点对称;利用定义法.
设F(x)=f(x)-g(x),判断F(-x)=-F(x),得出结论;
(2)利用函数的奇偶性整理不等式为loga(x+1)>loga(1-x),对底数a分类讨论得出x的范围,.

解答 解:(1)f(x)-g(x)=loga(x+1)-loga(1-x),若要式子有意义,
则$\left\{\begin{array}{l}x+1>0\\ 1-x>0\end{array}\right.$,即-1<x<1.所以所求定义域为{x|-1<x<1}.
设F(x)=f(x)-g(x),
则F(-x)=f(-x)-g(-x)=loga(-x+1)-log(1+x)=-[loga(x+1)-loga(1-x)]=-F(x),
所以f(x)-g(x)是奇函数.----------------------(4分)
(2)f(x)-g(x)>0,即 loga(x+1)-loga(1-x)>0,loga(x+1)>loga(1-x).
当0<a<1时,上述不等式等价于$\left\{\begin{array}{l}x+1>0\\ 1-x>0\\ x+1<1-x\end{array}\right.$,解得-1<x<0;
当a>1时,原不等式等价于$\left\{\begin{array}{l}x+1>0\\ 1-x>0\\ x+1>1-x\end{array}\right.$,解得0<x<1.
综上所述,当0<a<1时,原不等式的解集为{x|-1<x<0};
当a>1时,原不等式的解集为{x|0<x<1}.…(10分)

点评 考查了利用定义法判断函数的奇偶性,奇偶性在不等式中的应用和对底数a的分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数$f(x)=\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(I)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(II)令bn=an-1•an(n≥2),b1=3,sn=b1+b2+…+bn,若${S_n}<\frac{m-2003}{2}$对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆心在第一象限的圆过点P(-4,3),圆心在直线2x-y+1=0上,且半径为5,则这个圆的方程为(x-1)2+(y-3)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l的一个方向向量$\overrightarrow d=(1,2)$,则l与直线x-y+2=0的夹角为arccos$\frac{3\sqrt{10}}{10}$.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆ρ=2,直线ρcosθ=4,过极点作射线交圆于点A,交直线于点B,当射线以极点为中心转动时,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式log${\;}_{\frac{1}{2}}$x≥2的解集为(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中正确的是(  )
A.当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2B.当x>0且x≠1时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2
C.当x≥3时,x+$\frac{1}{x}$的最小值是$\frac{10}{3}$D.当0<x≤1时,x-$\frac{1}{x}$无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)对一切x∈R,都有f(x+2)=$\frac{1}{f(x)}$,且f(1)=-1,则f(5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知线段AB的端点B的坐标是(-4,3),端点A在圆(x-1)2+y2=4上运动,求线段AB的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案