精英家教网 > 高中数学 > 题目详情

设集合A={1,2,3,4},m,n∈A,则方程表示焦点在x轴上的椭圆有
A.6个B.8个C.12个D.16个
A
本题考查椭圆的标准方程及 问题解决问题的能力.
因为椭圆表示焦点在x轴上的椭圆,所以,当
时,;(2)当时,时,所以表示焦点在x轴上的椭圆有6个.故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的两个焦点分别为,点P在椭圆上,且满足,直线与圆相切,与椭圆相交于A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)证明为定值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(1)求椭圆的方程;
(2)设直线且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是_________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆和双曲线=1有公共的焦点,则双曲线的渐近线方程是
A.x=±B.y=±C.x=± D.y=±

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆C:的左、右顶点的坐标分别为,,离心率
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为,,点P是其上的动点,
(1)当 内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线与椭圆交于两点,证明直线与直线的交点在直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为F1、F2,  P为椭圆上一点, 且∠F1PF2=60°,
的值为         ▲    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的上项点为B1,右、右焦点为F1、F2是面积为的等边三角形。
(I)求椭圆C的方程;
(II)已知是以线段F1F2为直径的圆上一点,且,求过P点与该圆相切的直线的方程;
(III)若直线与椭圆交于A、B两点,设的重心分别为G、H,请问原点O在以线段GH为直径的圆内吗?若在请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的图C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线
④作出直线AC。
设直线AC与直线相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是(   )
A、椭圆       B、双曲线       C、抛物线       D、圆

查看答案和解析>>

同步练习册答案