精英家教网 > 高中数学 > 题目详情
某办公室有5位教师,只有3台电脑供他们使用,每位教师是否使用电脑是相互独立的.

(Ⅰ)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;

(Ⅱ)若下午某一时段每位教师需要使用电脑的概率都是,求这一时段该办公室电脑数无法满足需求的概率.

解:(Ⅰ)甲、乙、丙教师使用电脑的事件分别记为A、B、C,因为各位教师是否使用电脑是相互独立的,所以甲、乙、丙三位教师中恰有2位使用电脑的概率是:

p=P(AB)+P(AC)+P(BC)

=

(Ⅱ)电脑无法满足需求,即指有4位以上(包括4位)教师同时需要使用电脑,记有4位教师同时需要使用电脑的事件为M,有5位教师同时需要使用电脑的事件为N,

P(M)=

P(N)=()5

所以所求的概率是:

P=P(M)+P(N)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的.
(1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是
1
4
2
3
2
5
,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;
(2)若下午某一时段每位教师需要使用电脑的概率都是
1
3
,求在这一时段该办公室电脑使用的平均台数和无法满足需求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(12分)

某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的。

(1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;

(2)若下午某一时段每位教师需要使用电脑的概率都是,求这一时段该办公室电脑数无法满足需求的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的.
(1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是
1
4
2
3
2
5
,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;
(2)若下午某一时段每位教师需要使用电脑的概率都是
1
3
,求在这一时段该办公室电脑使用的平均台数和无法满足需求的概率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省实验中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的.
(1)若上午某一时段A、B、C三位教师需要使用电脑的概率分别是,求这一时段A、B、C三位教师中恰有2位教师使用电脑的概率;
(2)若下午某一时段每位教师需要使用电脑的概率都是,求在这一时段该办公室电脑使用的平均台数和无法满足需求的概率.

查看答案和解析>>

同步练习册答案