精英家教网 > 高中数学 > 题目详情
f(x) =
x-2   x>0
0   x =0
x2+1  x<0
,则f[f(1)]的值为(  )
A.2B.1C.0D.-1
f(x) = 
x-2   x>0
0   x =0
x2+1  x<0
,∴f(1)=1-2=-1,∴f[f(1)]=f(-1)=1+1=2,
故选 A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
.?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中数学 来源:2013年上海市黄浦区高考数学一模试卷(文科)(解析版) 题型:填空题

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

同步练习册答案