精英家教网 > 高中数学 > 题目详情
11.已知sinα=$\frac{1}{2}$+cosα,且α∈[0,$\frac{π}{2}$],则$\frac{cos2α}{sin(α-\frac{π}{4})}$的值为-$\frac{\sqrt{14}}{2}$.

分析 由条件利用同角三角函数的基本关系求得 2sinαcosα=$\frac{3}{4}$,要要求的式子化为$\sqrt{2}$•$\sqrt{1+2sinαcosα}$,可得结果.

解答 解:∵sinα=$\frac{1}{2}$+cosα,且α∈[0,$\frac{π}{2}$],∴sinα-cosα=$\frac{1}{2}$,平方可得 2sinαcosα=$\frac{3}{4}$,
则$\frac{cos2α}{sin(α-\frac{π}{4})}$=$\frac{(cosα-sinα)•(cosα+sinα)}{\frac{\sqrt{2}}{2}(sinα-cosα)}$=-$\sqrt{2}$(cosα+sinα)=-$\sqrt{2}$•$\sqrt{1+2sinαcosα}$=-$\sqrt{2}$$\sqrt{1+\frac{3}{4}}$=-$\frac{\sqrt{14}}{2}$,
故答案为:-$\frac{\sqrt{14}}{2}$.

点评 本题主要考查同角三角函数的基本关系,二倍角的余弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f1(x)=x,且对任意的n∈N*,fn(1)=1,f′n+1(x)=fnx+xf′nx.
(1)求fn(x)的解析式;
(2)设函数gn(x)=fn(x)+fn(m-x),x∈(0,m),m>0,对于任意的三个数${x_1},{x_2},{x_3}∈[\frac{m}{2},\frac{2m}{3}]$,以g3(x1),g3(x2),g3(x3)的值为边长的线段是否可构成三角形?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为(阴影部分)(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=f(x)是R上的奇函数,满足f(3+x)=f(3-x),当x∈(0,3)时,f(x)=2x,则f(-5)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=(x+1)-2+2.
(1)作出函数y的图象;
(2)确定随x的增加,函数值y的变化情况;
(3)比较f(-2)与f(-$\frac{\sqrt{2}}{2}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.i是虚数单位,($\frac{\sqrt{2}}{1-i}$)2014+($\frac{1+i}{1-i}$)6=$\frac{1}{{2}^{1007}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sin(x+θ)(0<θ<π),若函数 y=f(x)f′(x)是偶函数.则θ=$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=4[f(x)]2-4a•f(x)+2a2-2(a≥0)
(1)证明函数f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增;
(2)分别求函数f(x)和g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.满足约束条件$\left\{\begin{array}{l}{x-3z≤0}\\{x-y+6z≥0}\\{x+y≥0}\\{x,y>0,z>0}\end{array}\right.$,则$\frac{y+3z}{x}$的取值范围是(1,+∞).

查看答案和解析>>

同步练习册答案