精英家教网 > 高中数学 > 题目详情
5.已知E、F、G、H依次为空间四边形ABCD的边AB、BC、CD、DA上的点,且直线EF交直线HG于点P,则点P的位置是必处在(  )的上面.
A.BDB.ADC.ACD.平面BCD之内

分析 由已知得EF?平面ABC,GH?平面ACD,由此利用公理二,能得到点P的位置是必在直线AC的上面.

解答 解:∵E、F、G、H依次为空间四边形ABCD的边AB、BC、CD、DA上的点,且直线EF交直线HG于点P,
∴EF?平面ABC,GH?平面ACD,
∵EF∩GH=P,平面ABC∩平面ADC=AC,
∴由公理二,得:点P的位置是必处在直线AC的上面.
故选:C.

点评 本题考查点的位置的判断,是基础题,解题时要认真审题,注意公理二的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.经过点M(-m,3),N(5,-m)的直线的斜率为1,则m=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{\sqrt{3}}{6}$a,则$\frac{c}{b}$+$\frac{b}{c}$取得最大值时,内角A的值为(  )
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若全集U={n|n是小于9的正整数},集合A={n∈U|n是奇数},B={n∈U|n是3的倍数},求:
(1)A∩B
(2)∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一个圆柱的轴截面是一个正方形,且此正方形的面积为S,则此圆柱的底面半径为$\frac{1}{2}$$\sqrt{S}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合 A={x|x>0},B={-1,0,1},则 A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三角形的面积s=$\frac{1}{2}$(a+b+c)r,a,b,c为其边长,r为内切圆的半径,利用类比法可以得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc(a,b,c为地面边长)
B.V=$\frac{1}{3}$sh(s为地面面积,h为四面体的高)
C.V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分别为四个面的面积,r为内切球的半径)
D.V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c为地面边长,h为四面体的高)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点分别为A和B,且$\overrightarrow{AB}$与$\overrightarrow{n}$=(1,-$\frac{\sqrt{3}}{2}$)共线,若点O,F分别为椭圆C的中心和左焦点,点P为椭圆C上任意一点,且$\overrightarrow{OP}$•$\overrightarrow{FP}$的最大值为6,则椭圆C的长轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{a-\frac{2}{{e}^{x}+1},x≥0}\\{\frac{2}{{e}^{x}+1}-\frac{3}{2},x<0}\end{array}\right.$  
(1)当a=$\frac{1}{2}$时,判断函f(x)的奇偶性,并说明理由;
(2)若函数f(x)在(0,+∞)内有且只有一个零点,求实数α的取值范围.

查看答案和解析>>

同步练习册答案