精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项、公比都为q(q>0且q≠1)的等比数列,bn=anlog4an(n∈N*).
(1)当q=5时,求数列{bn}的前n项和Sn
(2)当q=时,若bn<bn+1,求n最小值.
【答案】分析:(1)根据数列{an}是首项、公比都为q的等比数列得到数列{an}的通项公式,把{an}的通项公式代入bn=anlog4an中得到数列{bn}的通项公式,把q=5代入后列举出数列{bn}的各项,提取log45后剩下的式子设为Tn①,乘以5得到②,②-①再利用等比数列的前n项和的公式化简可得Tn的通项公式,即可得到数列{bn}的前n项和Sn的通项公式;
(2)把q=代入到bn=anlog4an中得到数列{bn}的通项公式,然后根据bn+1-bn>0列出关于n的不等式,求出不等式的解集,即可找出满足题意的正整数n的值.
解答:解:(1)由题得an=qn,∴bn=an•log4an=qn•log4qn=n•5n•log45
∴Sn=(1×5+2×52+…+n×5n)log45
设Tn=1×5+2×52+…+n×5n
5Tn=1×52+2×53+…(n-1)5n+n×5n+1
②-①:-4Tn=5+52+52+…+5n-n×5n+1=-n×5n+1
Tn=
Sn=
(2)bn=anlog4an=
bn+1-bn=[(n+1)
=,因为<0,>0,
所以,解得n>14,
即取n≥15时,bn<bn+1
所求的最小自然数是15.
点评:此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式及前n项和的公式化简求值,会利用错位相减法求数列的和,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案