精英家教网 > 高中数学 > 题目详情

如图,已知直线l:y=2x+m(m<0)与抛物线C1:y=ax2(a>0)和圆C2:x2+(y+1)2=5都相切,F是C1的焦点.

(1)求m与a的值;

(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;

(3)在(2)的条件下,记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.

答案:
解析:

  解:(1),又

   2分

  消去得:

  

  即 4分

  (2)设切线的方程为 6分

  令

  即 7分

  因此直线的方程为 8分

  令

  在直线 10分

  (3)设直线的方程为代入得:

   12分

  又 14分

   14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,O为坐标原点,
OA
+
OB
=(-4,-12)

(Ⅰ)求直线l和抛物线C的方程;
(Ⅱ)抛物线上一动点P从A到B运动时,求△ABP面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(Ⅰ)试求an+1与an的关系,并求{an}的通项公式;
(Ⅱ)当a=1,a1
1
2
时,证明
n
k=1
(ak-ak+1)ak+2
1
32

(Ⅲ)当a=1时,证明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线L:y=kx-1与抛物线C:y=x2,相交于两点A、B,设点M(0,2),△MAB的面积为S.
(1)若直线L上与M连线距离为1的点至多存在一个,求S的范围.
(2)若直线L上与M连线的距离为1的点有两个,分别记为C、D,且满足S≥λ|CD|恒成立,求正数λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州三模)如图,已知直线l:y=4x及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<4).从曲线C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(1)试求an+1与an的关系; 
(2)若曲线C的平行于直线l的切线的切点恰好介于点Q1,Q2之间(不与Q1,Q2重合),求a3的取值范围;
(3)若a1=3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省温州市八校联考高三(上)期初数学试卷 (文科)(解析版) 题型:解答题

如图,已知直线L:y=kx-1与抛物线C:y=x2,相交于两点A、B,设点M(0,2),△MAB的面积为S.
(1)若直线L上与M连线距离为1的点至多存在一个,求S的范围.
(2)若直线L上与M连线的距离为1的点有两个,分别记为C、D,且满足S≥λ|CD|恒成立,求正数λ的范围.

查看答案和解析>>

同步练习册答案