精英家教网 > 高中数学 > 题目详情

设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y1y2=-4.
(1)求抛物线C的方程;
(2)若直线2x+3y=0平分线段AB,求直线l的倾斜角.
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0=1时,k1+k2为定值.

解:(1)设直线l的方程为,代入y2=2px,可得y2-2pay-p2=0(*),
由于A(x1,y1),B(x2,y2)是直线l与抛物线的两交点,
故y1,y2是方程(*)的两个实根,
,又y1y2=-4,所以-p2=-4,又p>0,可得p=2,
所以抛物线C的方程为y2=4x.             
(2)由(1)可知y1+y2=2pa=4a,
设点D是线段AB的中点,则有
由题意知点D在直线2x+3y=0上,
∴2(2a2+1)+6a=0,解得a=-1或
设直线l的倾斜角为α,则或-2,又α∈[0,π),
故直线l的倾斜角为或π-arctan2.    
(3),可得yM=-2,
由(1)知y1+y2=4a,又y1y2=-4,
==
所以k1+k2为定值.
分析:(1)设直线l的方程为,代入y2=2px,消掉x得y的二次方程,利用韦达定理及y1y2=-4即可求得p值,从而得抛物线方程;
(2)由(1)可知y1+y2=2pa=4a,设点D是线段AB的中点,由中点坐标公式可得D点横坐标,代入直线l方程可得纵坐标,根据点D在直线2x+3y=0上可求得a值,设直线l的倾斜角为α,则tanα=,根据倾斜角范围即可求得α;
(3)由k0=1可求得yM,从而得知M点坐标,由(1)知y1+y2=4a,y1y2=-4,根据点A、B在直线l上及斜率公式把k1+k2表示出来,进行化简即可求得定值;
点评:本题考查直线与圆锥曲线的位置关系、直线斜率及抛物线方程,直线方程、斜率公式是解决该类问题的基础,应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点,若△BDF为等边三角形,△ABD的面积为6,则p的值为
3
3
,圆F的方程为
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区一模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若p=2,求线段AF中点M的轨迹方程;
(2)若直线AB的方向向量为
n
=(1,2)
,当焦点为F(
1
2
,0)
时,求△OAB的面积;
(3)若M是抛物线C准线上的点,求证:直线MA、MF、MB的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)过点M(3,0)作方向向量为
d
=(1,a)
的直线与曲线C相交于A,B两点,求△FAB的面积S(a)并求其值域;
(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O为坐标原点),且点E在抛物线C上,求直线l倾斜角;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0为定值时,k1+k2也为定值.

查看答案和解析>>

同步练习册答案