精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011=(  )
分析:a1=1,a2=5,a n+2=a n+1-an(n∈N*),求出a3=a2-a1=5-1=4,a4=a3-a2=4-5=-1,a5=a4-a3=-1-4=-5,a6=a5-a4=-5+1=-4,a7=a6-a5=-4+5=1,a8=a7-a6=1-(-4)=5,由此可知这是一个周期为6的数列,从而能够求出a2011
解答:解:∵a1=1,a2=2,a n+2=a n+1-an(n∈N*),
∴a3=a2-a1=5-1=4,
a4=a4-a2=4-5=-1,
a5=a4-a3=-1-4=-5,
a6=a5-a4=-5+1=-4,
a7=a6-a5=-4+5=1,
a8=a7-a6=1-(-4)=5,

这是一个周期为6的数列,
∵2011÷6=335…1
∴a2011=a1=1.
故选C.
点评:本题考查数列的递推公式的应用,解题时要认真审题,仔细解答,注意寻找规律.正确解题的关键是求出该数列是周期为6的周期数列,易错点是找不到周期,导致无法求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等差数列;
(Ⅲ)设cn=
3
bnbn+1
,Sn是数列{cn}的前n项和,求使Sn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想数列{an}的通项公式an的表达式;
(2)用适当的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)计算a2,a3
(Ⅱ)求证:{
an-
1
2
3n
}是等差数列;
(Ⅲ)求数列{an}的通项公式an及其前n项和Sn

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�