精英家教网 > 高中数学 > 题目详情

已知函数f(x)满足:数学公式,f(x+y)+f(x-y)=2f(x)f(y)(x,y∈R),则f(0)+f(1)+f(2)+…+f(2013)等于


  1. A.
    -1
  2. B.
    0
  3. C.
    数学公式
  4. D.
    1
B
分析:令x=1,y=0,可求得f(0),进一步可求得f(1)与f(2)的值,再令y=1,可求得f(x+1)+f(x-1)=f(x),继而有f(x+3)+f(x)=0,得到函数f(x)是以6为周期的函数,即可解决问题.
解答:∵f(x+y)+f(x-y)=2f(x)f(y)(x,y∈R),
令y=1则:f(x+1)+f(x-1)=f(x)…(1),
再以x+1代x可得:f(x+2)+f(x)=f(x+1)…(2),
两式相减得:f(x+2)+f(x-1)=0,
即f(x+3)+f(x)=0.
∴f(x+3)=-f(x),
∴f(x+6)=f(x),即函数f(x)是以6为周期的函数.
∴f(0)+f(1)+…+f(2013)
=[f(0)+f(3)]+[f(1)+f(4)]+[f(2)+f(5)]
+…+[f(2010)+f(2013)]+f(2011)+f(2012)
=0+0+…+0+f(2011)+f(2012)
=f(335×6+1)+f(335×6+2)
=f(1)+f(2),
令x=1,y=0,得2f(1)=2f(1)•f(0),又f(1)=
∴f(0)=1,
同理可得f(2)=-
∴f(1)+f(2)=0,
∴f(0)+f(1)+f(2)+…+f(2013)=0.
故选B.
点评:本题考查抽象函数及其应用,求得f(x+3)+f(x)=0是关键,得到f(x+6)=f(x)是难点,考查综合分析与观察解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案