精英家教网 > 高中数学 > 题目详情
(2013•昌平区二模)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD=2,E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求三棱锥P-BCD的体积;
(Ⅲ) 在线段AB上是否存在点G,使得CD⊥平面EFG?说明理由.
分析:(I)连接AC交BD于F,利用三角形的中位线定理即可得到EF∥AP,再利用线面平行的判定定理即可证明;
(II)取AD的中点O,连接OP.由等腰三角形的性质可得PO⊥AD,再利用面面垂直的性质可得PO⊥底面ABCD,计算出三角形BCD的面积,利用三棱锥的体积计算公式即可得出;
(III)设点G为AB中点满足条件,利用三角形的中位线定理可证明FG∥AD,再利用(I)的结论和面面平行的判定定理即可证明平面EFG∥平面PAD.利用面面垂直的性质可证明CD⊥平面PAD.
再利用面面平行的性质定理即可得到结论.
解答:(Ⅰ)证明:连接AC交BD于F,
∵ABCD为正方形,∴F为AC中点,
∵E为PC中点.
∴在△CPA中,EF∥AP.
又PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(Ⅱ)解:如图,取AD的中点O,连接OP.
∵PA=AD,∴PO⊥AD.
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴PO⊥平面ABCD.
又且PA=PD=
2
2
AD=2,∴△PAD是等腰直角三角形,
且AD=2
2
,PO=
1
2
AD=
2

在正方形 ABCD中,S△BCD=
1
2
×AD2=
1
2
×(2
2
)2
=4.
VP-BCD=
1
3
S△BCD×PO
=
1
3
×4×
2
=
4
2
3

(3)存在点G满足条件,证明如下:
设点G为AB中点,连接EG、FG.
由F为BD的中点,∴FG∥AD,
由(I)得EF∥PA,且FG∩EF=F,AD∩PA=A,
∴平面EFG∥平面PAD.
∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AD⊥CD,
∴CD⊥平面PAD.
∴CD⊥平面EFG.
所以AB的中点G为满足条件的点.
点评:熟练掌握三角形的中位线定理、线面平行的判定定理、等腰三角形的性质、面面垂直的性质、三棱锥的体积计算公式、面面平行的判定和性质定理、面面垂直的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区二模)i是虚数单位,则复数z=
2i-1
i
在复平面内对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)设数列{an},对任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常数).
(1)当k=0,b=3,p=-4时,求a1+a2+a3+…+an
(2)当k=1,b=0,p=0时,若a3=3,a9=15,求数列{an}的通项公式;
(3)若数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当k=1,b=0,p=0时,设Sn是数列{an}的前n项和,a2-a1=2,试问:是否存在这样的“封闭数列”{an},使得对任意n∈N*,都有Sn≠0,且
1
12
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
11
18
.若存在,求数列{an}的首项a1的所有取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据上面探究结果,解答以下问题
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
1
2
,1)
1
2
,1)

(2)计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)如图,在边长为2的菱形ABCD中,∠BAD=60°,E为CD的中点,则
AE
BD
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)圆x2+(y-2)2=1的圆心到直线
x=3+t
y=-2-t
(t为参数)的距离为(  )

查看答案和解析>>

同步练习册答案