精英家教网 > 高中数学 > 题目详情
13.如图,在三棱柱ABC-A1B1C1中,面ABB1A为矩形,$AB=BC=1,A{A_1}=\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,BC⊥AB1
(1)证明:CD⊥AB1
(2)若$OC=\frac{{\sqrt{3}}}{3}$,求二面角A-BC-B1的余弦值.

分析 (1)推导出DB⊥AB1,BC⊥AB1,从而AB1⊥平面BDC,由此能证明CD⊥AB1
(2)以O为坐标原点OA、OD、OC所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角A-BC-B1的余弦值.

解答 证明:(1)∵△AB1B与△DBA相似,∴DB⊥AB1
又BC⊥AB1,BD∩BC=B,
∴AB1⊥平面BDC,
∵CD?平面BDC,∴CD⊥AB1.…(5分)
解:(2)∵$OC=\frac{{\sqrt{3}}}{3},BC=1$,∴在△ABD中$OB=\frac{{\sqrt{6}}}{3}$,
∴△BOC是直角三角形,且BO⊥CO.
由(1)知CO⊥AB1,则CO⊥平面ABB1A1
以O为坐标原点OA、OD、OC所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则$A(\frac{{\sqrt{3}}}{3},0,0),B(0,-\frac{{\sqrt{6}}}{3},0),C(0,0,\frac{{\sqrt{3}}}{3}),{B_1}(-\frac{2}{3}\sqrt{3},0,0)$,
$\overrightarrow{BC}$=(0,$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$),$\overrightarrow{AB}$=(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{6}}{3}$,0),$\overrightarrow{B{B}_{1}}$=(-$\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$,0),
设平面ABC,平面BCB1的法向量分别为$\overrightarrow{n}$=(x,y,z),$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{BC}•\overrightarrow{n}=\frac{\sqrt{6}}{3}y+\frac{\sqrt{3}}{3}z=0}\\{\overrightarrow{AB}•\overrightarrow{n}=-\frac{\sqrt{3}}{3}x-\frac{\sqrt{6}}{3}y=0}\end{array}\right.$,∴取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2},-1,\sqrt{2}$),
$\left\{\begin{array}{l}{\overrightarrow{BC}•\overrightarrow{m}=\frac{\sqrt{6}}{3}b+\frac{\sqrt{3}}{3}c=0}\\{\overrightarrow{B{B}_{1}}•\overrightarrow{m}=-\frac{2\sqrt{3}}{3}a+\frac{\sqrt{6}}{3}b=0}\end{array}\right.$,∴取a=1,得$\overrightarrow{m}$=(1,$\sqrt{2}$,-2),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=-$\frac{2\sqrt{70}}{35}$,
又如图所示A-BC-B1为钝二面角
∴二面角A-BC-B1的余弦值为$-\frac{{2\sqrt{70}}}{35}$.…(12分)

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若AB=5,B=60°,BC=8,则AC=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,PA⊥平面ABC,PA=$\sqrt{2}$,AB=1,BC=$\sqrt{3}$,AC=2.
(1)求证:BC⊥平面PAB;
(2)求二面角B-PA-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(4cosθ+3sinθ)-m=0(其中m为常数).
(1)若直线l与曲线C恰好有一个公共点,求实数m的值;
(2)若m=4,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,以AB为直径的圆O与以N为圆心,半径为1的圆一个交点为Q,延长AB至点P,过点P作两圆的切线,分别切于M,N两点,已知AB=4.
(1)证明:AN=PN;
(2)求QN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C1的参数方程是$\left\{\begin{array}{l}x=cosφ\\ y=2sinφ\end{array}\right.$(φ为参数),以直角坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是$ρsinθ-2ρcosθ=4\sqrt{2}$.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上任意一点,Q为曲线C2上任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设x>0,f(x)=eax-x
(I)讨论f(x)的单调性;
(Ⅱ)当a=1时,证明:f(x)>$\frac{{x}^{2}}{2}$+1;
(Ⅲ)若ex=1+x+$\frac{1}{2}$x2ey,证明:0<y<x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为x2-2x+y2=0,以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=$\frac{π}{4}$(ρ∈R).
(Ⅰ)写出C的极坐标方程,并求l与C的交点M,N的极坐标;
(Ⅱ)设P是椭圆$\frac{{x}^{2}}{3}$+y2=1上的动点,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若曲线$\left\{\begin{array}{l}{x=2-tsin30°}\\{y=-1+tsin30°}\end{array}\right.$(t为参数) 与曲线x2+y2=8相交于B,C两点,则|BC|的值为(  )
A.$2\sqrt{7}$B.$\sqrt{60}$C.$7\sqrt{2}$D.$\sqrt{30}$

查看答案和解析>>

同步练习册答案