精英家教网 > 高中数学 > 题目详情
已知
a
b
均为非零向量,命题p:
a
b
>0,命题q:
a
b
的夹角为锐角,则p是q成立的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件
分析:
a
b
>0时,
a
b
的夹角为锐角或零角
解答:解:
a
b
>0时,
a
b
的夹角为锐角或零角,不一定是锐角,故充分性不成立.
a
b
的夹角为锐角或零角时,有
a
b
>0,
因此p是q成立必要不充分条件
故选A.
点评:本题考查用两个向量的数量积表示两个向量的夹角,以及充要条件,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以下五个命题:

①若a≠0,且a·b=0,则b=0;

②若a=0,则a·b=0;

③若a·b=a·c(其中a、b、c均为非零向量),则b=c;

④若a、b、c均为非零向量,(a·b)c=a(b·c)一定成立;

⑤已知a、b、c均为非零向量,则|a+b+c|=|a|+|b|+|c|成立的充要条件是a、b与c同向.

其中正确命题的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下五个命题:

①若则b=0;

②若a=0,则=0;

③若,(其中a、b、c均为非零向量),则b=c;

④若a、b、c均为非零向量,(一定成立;

⑤已知a、b、c均为非零向量,则成立的充要条件是a、b与c同向其中正确命题的序号是_______________。

查看答案和解析>>

同步练习册答案