精英家教网 > 高中数学 > 题目详情
在Rt△ABC中,AC=3,BC=4,点D是斜边AB上的一点,且AC=AD.
(Ⅰ)求CD的长;
(Ⅱ)求sin∠BDC的值.
分析:(I)在直角△ABC中,求得cosA=
3
5
,在△ACD中,根据余弦定理CD2=AC2+AD2-2AC•ADcosA,即可求CD的长;
(II)在△BCD中,求得sinB=
3
5
,根据正弦定理
BC
sin∠BDC
=
CD
sin∠B
,可求sin∠BDC的值.
解答:解:(I)因为在直角△ABC中,AC=3,BC=4,所以AB=5,…(1分)
所以cosA=
3
5
…(3分)
在△ACD中,根据余弦定理CD2=AC2+AD2-2AC•ADcosA…(6分)
所以CD2=32+32-2•3•3•
3
5

所以CD=
6
5
5
…(8分)
(II)在△BCD中,sinB=
3
5
…(9分)
根据正弦定理
BC
sin∠BDC
=
CD
sin∠B
…(12分)
把BC=4,CD=
6
5
5
代入,得到sin∠BDC=
2
5
5
…(13分)
点评:本题考查解三角形,考查余弦定理、正弦定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,在Rt△ABC中,∠A=90°,以AB为直径的半圆交BC于D,过D作圆的切线交AC于E.
求证:(1)AE=CE;
(2)CD•CB=4DE2

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠A=60°,∠C=90°,过点C做射线交斜边AB于P,则CP<CA的概率是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠A=90°,|
AB
|=1
,则
AB
BC
的值为:(  )
A、1B、-1
C、1或-1D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,a、b为直角边,c为斜边,则c的外接圆半径R=
 
,内切圆半径r=
 
,斜边上的高为hc=
 
,斜边被垂足分成两线段之长为
 

查看答案和解析>>

同步练习册答案