精英家教网 > 高中数学 > 题目详情
求证:对角线互相垂直的四边形中,各边中点在同一个圆周上.
考点:圆內接多边形的性质与判定
专题:选作题,立体几何
分析:利用三角形中位线的性质,证明EFGH为平行四边形,利用对角线互相垂直,证明EFGH为矩形,即可得出结论.
解答: 已知:AC,BD为四边形ABCD的对角线,AC垂直BD,E,F,G,H分别是AB,BC,CD,DA的中点,
求证:E,F,G,H在同一个圆上.
证明:连接EF,FG,GH,HE,则EH是三角形ABD的中位线,所以:EH∥BD
FG是三角形CBD的中位线,所以:FG∥BD
所以:EH∥FG
同理EF∥AC,HG∥AC
所以:EF∥HG
所以:EFGH为平行四边形
因为AC垂直BD,EH∥FG,EF∥AC
所以:EH垂直EF
所以:EFGH为矩形
所以:E,F,G,H在同一个圆上.
点评:本题考查圆內接多边形的性质与判定,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在二面角α-l-β的两个面α,β内,分别有直线a,b,它们与棱l都不垂直,试证明:当该二面角是直二面角时,可能a∥b,但不可能a⊥b.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A为PD的中点,如图1.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且SE=
1
3
SD,如图2.

(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值;
(3)在线段BC上是否存在点F,使SF∥平面EAC?若存在,确定F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=x,a2=3x,Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*),Sn是数列{an}的前n项和,若对?n∈N*,an<an+1恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=3,AC=BC=2,D为AB中点,E为BB1上一点,且
BE
EB1
=λ.
(Ⅰ)当λ=
2
7
时,求证:CE⊥平面A1C1D;
(Ⅱ)若直线CE与平面A1DE所成的角为30°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不等的正整数x,y,满足
x2
x+y
为质数,试比较x和y的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以x轴负半轴为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(-
3
5
4
5
).
(1)求
sin2α+cos2α+1
1+tanα
的值;
(2)若
OP
OQ
=0,求sin(α+
β
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,MA⊥平面ABCD,四边形ABCD为菱形,四边形ADNM为平行四边形,点E为AB中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)求证:AC⊥平面BDN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AP是⊙O的切线,A为切点,AE=3,EC=4,BE=6,PE=6,则AP=
 

查看答案和解析>>

同步练习册答案