精英家教网 > 高中数学 > 题目详情
设{an}是由正数组成的等差数列,Sn是其前n项和,
(1)若Sn=20,S2n=40,求S3n的值;
(2)若有互不相等的正整数p、q、m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1(n∈N*)恒成立?若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

解:(1)在等差数列{an}中,成等差数列,


(2)


(3)设(p、q为常数),则



依题意有,
对一切正整数n成立,∴
由①得,p=0或
若p=0,代入②有q=0,而p=q=0不满足③,∴p≠0;
代入②,
,代入③得,
代入,得,解得
故存在常数及等差数列使其满足题意。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是由正数组成的等比数列,Sn是其前n项和.
(1)证明
lgSn+lgSn+2
2
<lgSn+1

(2)是否存在常数c>0,使得
lg(Sn-c)+lg(Sn+2-c)
2
=lg(Sn+1-c)
成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是由正数组成的等比数列,且a3•a7=64,那么log2a1+log2a2+…+log2a9的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•金华模拟)设{an}是由正数组成的等比数列,公比为q,Sn是其前n项和.
(1)若q=2,且S1-2,S2,S3成等差数列,求数列{an}的通项公式;
(2)求证:对任意正整数n,Sn,Sn+1,Sn+2不成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是由正数组成的等比数列,Sn为其前n项和,已知a2×a4=1,S3=7,则a1+a2=(  )

查看答案和解析>>

同步练习册答案