精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sin(ωx+φ),2),
b
=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
)
,函数f(x)=(
a
+
b
)•(
a
-
b
)
的图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点A(1,
7
2
)

(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求f(x)的单调区间.
分析:(1)由已知中向量
a
=(sin(ωx+φ),2),
b
=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
)
,函数f(x)=(
a
+
b
)•(
a
-
b
)
,我们根据向量数量积的运算公式,及二倍角公式,结合图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点A(1,
7
2
)
.求出ω,φ,得到函数的解析式.
(2)根据(1)的函数的解析式,根据正弦型函数的单调性,结合x∈[-1,1],可以得到f(x)的单调区间.
解答:解:(1)f(x)=(
a
+
b
)•(
a
-
b
)=
a
2
-
b
2

=sin2(wx+y)+4-1-cos2(wx+φ)=3-cos(2wx+2φ)(2分)
依题知:
7
4
=1
∴T=4
200
=4
w=
π
4

又过点A(1,
7
2
)
cos(
π
2
+2φ)=-
1
2

φ∈(0,
2
4
)
2φ=
π
6
(4分)
f(x)=3-cos(
π
2
x+
π
6
)
(6分)
(2)当x∈[-1,1]时,
π
2
x+
π
6
∈[-
π
3
3
]

π
2
x+
π
6
∈[-
π
3
,0]

x∈[-1,-
1
3
]
f(x)单减(9分)
同样当x∈[-
1
3
,1]
时f(x)单增(12分)
点评:本题考查的知识点正弦型函数解析式的求法,正弦型函数的单调性,其中根据已知条件,求出函数的周期,最值,向左平移量,特殊点坐标等,进而求出正弦型函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案