精英家教网 > 高中数学 > 题目详情
已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=
ax
ax+2

(1)求a的值;
(2)求f(x)+f(1-x)的值;
(3)求f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
的值.
分析:(1)由y=ax单调得a+a2=20,由此可求a;
(2)写出f(x),代入运算可得;
(3)借助(2)问结论分n为奇数、偶数讨论可求;
解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,
∴a+a2=20,得a=4,或a=-5(舍去);
(2)由(1)知f(x)=
4x
4x+2

f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2
=
4x
4x+2
+
4
4x
4
4x
+2

=
4x
4x+2
+
4
4x+4
=
4x
4x+2
+
2
4x+2
=1;
(3)由(2)知f(x)+f(1-x)=1,得
n为奇数时,f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
=
n-1
2
×1=
n-1
2

n为偶数时,f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
=
n-2
2
×1
+f(
1
2
)=
n-2
2
+
1
2
=
n-1
2

综上,f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
=
n-1
2
点评:本题考查指数函数的单调性、最值等知识,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=ax(a>0,且a≠1)和y=lg(ax2-x+a).则p:关于x的不等式ax>1的解集是(-∞,0);q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=
ax
ax+2

(1)求a的值;
(2)证明:f(x)+f(1-x)=1;
(3)求f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2010
2013
)+f(
2011
2013
)+f(
2012
2013
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
ax+1
(a<0)
在区间(-∞,1]恒有意义,则实数a的取值范围是
[-1,0)
[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在区间[-2,2]上的函数值恒小于2,则a的取值范围是
{a|1<a<
2
2
<a<1}
{a|1<a<
2
2
<a<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为(  )
A、
2
B、2
C、3
D、4

查看答案和解析>>

同步练习册答案