精英家教网 > 高中数学 > 题目详情

【题目】【2017重庆二诊】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人男、女各20人,记录了他们某一天的走路步数,并将数据整理如下:

1已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

010

005

0025

0010

2706

3841

5024

6635

2若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.

【答案】没有95%以上的把握认为二者有关;由见解析.

【解析】【试题分析】依据题设条件做成2×2列联表,计算出卡方系数,再与参数进行比对,做出判断;先求随机变量的分布列,再运用随机变量的数学期望公式计算求解:

积极型

懈怠型

总计

14

6

20

8

12

20

总计

22

18

40

,故没有95%以上的把握认为二者有关;

由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为,超过10000步的概率为,且当时,;当

时,;当时,

,即的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在(0,+∞)上的函数,且对任意的正实数x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,则不等式f(x)﹣f(8x﹣16)>0的解集是(
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表并以此估计赔付概率.

根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建三明5月质检】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅一套住宅为一户的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量单位:吨,将数据按照分成8组,制成了如图1所示的频率分布直方图.

假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.

现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;

试估计全市居民用水价格的期望精确到0.01

如图2是该市居民李某2016年1~6月份的月用水费与月份的散点图,其拟合的线性回归方程是.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川资阳4月模拟】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值百分制按照[50,60,[60,70,…,[90,100]分成5组,制成如图所示频率分直方图.

求图中的值;

已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,PM,切点为Q,M,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系;
(2)若以P为圆心的圆P与圆O有公共点,试求圆P的半径最小时圆P的方程;
(3)当P点的位置发生变化时,直线QM是否过定点,如果是,求出定点坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017山西三区八校二模】已知函数其中为常数且处取得极值.

时,求的单调区间;

上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为 +
③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497﹣﹣512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中命题正确的个数是(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

同步练习册答案