精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)是定义在(0,+∞)上的函数,且对任意的正实数x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,则不等式f(x)﹣f(8x﹣16)>0的解集是(
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2,

【答案】D
【解析】解:∵函数f(x)是定义在(0,+∞)上的函数,且对任意的正实数x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,
∴f(x)是定义在(0,+∞)上的增函数,
∴不等式f(x)﹣f(8x﹣16)>0可化为f(x)>f(8x﹣16),
即x>8x﹣16>0,
解得2<x<
所求不等式的解集是(2, ).
故选:D.
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1﹣x).
(1)求f(x)及g(x)的解析式;
(2)求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是曲线C: ﹣y2=1上的任意一点,直线l:x=2与双曲线C的渐近线交于A,B两点,若 ,(λ,μ∈R,O为坐标原点),则下列不等式恒成立的是(
A.λ22
B.λ22≥2
C.λ22
D.λ22≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)= 的定义域为集合A,则函数g(x)= 的定义域为集合B,
(1)求A∩B和A∪B
(2)若C={x|p﹣2<x<2p+1},且CA,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且的离心率为.

(1)求的方程;

(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)求函数g(x)=f(x+1)﹣x的最大值;
(2)若对任意x>0,不等式f(x)≤ax≤x2+1恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数表示相同函数的是(
A.f(x)= ,g(x)=( 2
B.f(x)=1,g(x)=x2
C.f(x)= ,g(t)=|t|
D.f(x)=x+1,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+ ,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集为[﹣1,5],求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人男、女各20人,记录了他们某一天的走路步数,并将数据整理如下:

1已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

010

005

0025

0010

2706

3841

5024

6635

2若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案