精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.

分析 (1)由正弦定理,三角形内角和定理,三角函数恒等变换的应用化简已知等式可得sinA=2sinAcosB,进而可求$cosB=\frac{1}{2}$,结合B为三角形内角,即可得解B的值.
(2)由等差数列的性质可得2b=a+c=6,利用余弦定理可求ac=9,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵bcosC=(2a-c)cosB,
∴由正弦定理sinBcosC=(2sinA-sinC)cosB,
∴sinBcosC+cosBsinC=2sinAcosB,…(2分)
∴sin(B+C)=2sinAcosB,…(3分)
又A+B+C=π,
∴sinA=2sinAcosB,…(4分)
∴$cosB=\frac{1}{2}$,
又B为三角形内角 …(5分)
∴$B=\frac{π}{3}$…(6分)
(2)由题意得 2b=a+c=6,…(7分)      
 又  $B=\frac{π}{3}$,
∴$cosB=\frac{1}{2}=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{{({a+c})}^2}-2ac-9}}{2ac}$…(9分)
∴ac=9…(10分)
∴${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{9\sqrt{3}}}{4}$…(12分)

点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,等差数列的性质,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2-ax+b(a、b∈R),A={x∈R|f(x)-x=0},B={x∈R|f(x)-ax=0},若A={1,-3},试用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,a4=1,a7+a9=16,a12=(  )
A.31B.30C.16D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;
(3)存在x∈(-∞,0],使|af(x)-f(2x)|>1成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(1)求C的参数方程;
(2)设点D在C上,C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号是2的小球的概率是$\frac{1}{2}$,则n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是R上的奇函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),0≤x<1}\\{1-|x-3|,x≥1}\end{array}\right.$则函数y=f(x)+$\frac{1}{2}$的所有零点之和是(  )
A.1-$\sqrt{2}$B.$\sqrt{2}$-1C.5-$\sqrt{2}$D.$\sqrt{2}$-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,三棱锥A-BCD中,BC⊥CD,AD⊥平面BCD,E、F分别为BD、AC的中点.
(I)证明:EF⊥CD;
(II)若BC=CD=AD=1,求点E到平面ABC的距离.

查看答案和解析>>

同步练习册答案