精英家教网 > 高中数学 > 题目详情
(2012•贵州模拟)已知函数f(x)=
a+blnx
x+1
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,f(x)<
m
x
恒成立,求实数m的取值范围.
分析:(I)求导函数,利用函数在点(1,f(1))处的切线方程为x+y=2,建立方程组,即可求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,f(x)<
m
x
恒成立,等价于
2x-xlnx
x+1
<m
恒成立,求出函数的最值,即可求实数m的取值范围.
解答:解:(Ⅰ)∵f(x)=
a+blnx
x+1
,∴f′(x)=
b
x
(x+1)-(a+blnx)
(x+1)2

∵点(1,f(1))在直线x+y=2上,∴f(1)=1,
∵直线x+y=2的斜率为-1,∴f′(1)=-1
∴有
a
2
=1
2b-a
4
=-1
,∴
a=2
b=-1

(Ⅱ)由(Ⅰ)得f(x)=
2-lnx
x+1
(x>0)

f(x)<
m
x
及x>0,可得
2x-xlnx
x+1
<m

g(x)=
2x-xlnx
x+1
,∴g(x)=
(1-lnx)(x+1)-(2x-xlnx)
(x+1)2
=
1-x-lnx
(x+1)2

令h(x)=1-x-lnx,∴h′(x)=-1-
1
x
<0(x>0)
,故h(x)在区间(0,+∞)上是减函数,
故当0<x<1时,h(x)>h(1)=0,当x>1时,h(x)<h(1)=0
从而当0<x<1时,g′(x)>0,当x>1时,g′(x)<0
∴g(x)在(0,1)是增函数,在(1,+∞)是减函数,故g(x)max=g(1)=1
要使
2x-xlnx
x+1
<m
成立,只需m>1
故m的取值范围是(1,+∞).
点评:本题考查导数知识的运用,考查导数的几何意义,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知圆C1的参数方程为
x=cosφ
y=sinφ
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ+
π
3
)

(Ⅰ)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)(x+1)(1-2x)5展开式中,x3的系数为
-40
-40
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)设集合M={x|x2-x-6<0},N={x|y=log2(x-1)},则M∩N等于(  )

查看答案和解析>>

同步练习册答案